推广 热搜: 学习方法  学科学习方法  各学科学习方法  脑力开发  演讲与口才  小学学习方法  记忆力  初中学习方法  资讯  英语 

2019年中考数学必背几何定理及辅助线解题方法

   日期:2024-01-19     来源:www.zhixueshuo.com    作者:智学网    浏览:485    评论:0    
核心提示:2019年中考数学必背几何定理及辅助线解题方法   初中几何在数学考试试题中所占比率较大,灵活度也强,但只须学会了入门知识点,灵活运用,几何题目的解答也就不在话下了。下面是初中数学几何部分的重点复习的总结,期望可以会你的学习有所帮助。

2019年中考数学必背几何定理及辅助线解题方法

  初中几何在数学考试试题中所占比率较大,灵活度也强,但只须学会了入门知识点,灵活运用,几何题目的解答也就不在话下了。下面是初中数学几何部分的重点复习的总结,期望可以会你的学习有所帮助。

  2019年中考数学复习:几何巧画辅助线的方法

  基本图形的辅助线的画法

  1 三角形问题添加辅助线办法

  有关三角形中线的题目,常将中线加倍。含有中点的题目,常常借助三角形的中位线,通过这种办法,把要证的结论适合的转移,比较容易地解决了问题。

  含有平分线的题目,常以角平分线为对称轴,借助角平分线的性质和题中的条件,架构出全等三角形,从而借助全等三角形的常识解决问题。

  结论是两线段相等的题目常画辅助线构成全等三角形,或借助关于平分线段的一些定理。

  结论是一条线段与另一条线段之和等于第三条线段这种题目,常使用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。

  2 平行四边形中常用辅助线的添法

  平行四边形的两组对边、对角和对角线都具备某些相同性质,所以在添辅助线办法上也有一同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成容易见到的三角形、正方形等问题处置,其常用办法有下列几种,举例简解如下:

  连对角线或平移对角线;

  过顶点作对边的垂线架构直角三角形;

  连接对角线交点与一边中点,或过对角线交点作一边的平行线,架构线段平行或中位线;

  连接顶点与对边上一点的线段或延长这条线段,架构三角形相似或等积三角形;

  过顶点作对角线的垂线,构成线段平行或三角形全等。

  3 梯形中常用辅助线的添法

  梯形是一种特殊的四边形。它是平行四边形、三角形常识的综合,通过添加适合的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:

  在梯形内部平移一腰;

  梯形外平移一腰;

  梯形内平移两腰;

  延长两腰;

  过梯形上底的两端点向下底作高;

  平移对角线;

  连接梯形一顶点及一腰的中点;

  过一腰的中点作另一腰的平行线;

  作中位线。

  当然在梯形的有关证明和计算中,添加的辅助线并可能不是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的重要。

  4 圆中常用辅助线的添法

  在平面几何中,解决与圆有关的问题时,常常需要添加适合的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活学会作辅助线的通常规律和容易见到办法,对提升学生剖析问题和解决问题的能力是大有帮助的。

  见弦作弦心距。有关弦的问题,常作其弦心距,通过垂径平分定理,来交流题设与结论间的联系。

  见直径作圆周角。在题目中若已知圆的直径,通常是作直径所对的圆周角,借助直径所对的圆周角是直角这一特点来证明问题。

  见切线作半径。命题的条件中含有圆的切线,总是是连结过切点的半径,借助切线与半径垂直这一性质来证明问题。

  两圆相切作公切线。对两圆相切的问题,通常是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。

  两圆相交作公共弦。对两圆相交的问题,一般是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。

  2019年中考数学必背几何定理

  1. 同角的余角相等。

  2. 对顶角相等。

  3. 三角形的一个外角等于和它不相邻的两个内角之和。

  4. 在同一平面内垂直于同一条直线的两条直线是平行线。

  5. 同位角相等,两直线平行。

  6. 等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。

  7. 直角三角形中,斜边上的中线等于斜边的一半。

  8. 在角平分线上的点到这个角的两边距离相等。及其逆定理。

  9. 夹在两条平行线间的平行线段相等。夹在两条平行线间的垂线段相等。

  10. 一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形。

  11. 有三个角是直角的四边形、对角线相等的平行四边形是矩形。

  12. 菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角。

  13. 正方形的四个角都是直角,四条边相等。两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。

  14. 在同圆或等圆中,假如两个圆心角、两条弧、两条弦、两个弦心距中有一对相等,那样它们所对应的其余各对量都相等。

  15. 垂直于弦的直径平分这条弦,并且平分弦所对弧。平分弦的直径垂直于弦,并且平分弦所对的弧。

  16. 直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。

  17. 相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比。相似三角形面积的比等于相似比的平方。

  18. 圆内接四边形的对角互补,并且任何一个外角等于它的内对角。

  19. 切线的断定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

  20. 切线的性质定理①经过圆心垂直于切线的直线必经过切点。②圆的切线垂直于经过切点的半径。③经过切点垂直于切线的直线必经过圆心。

  21. 切线长定理从圆外一点引圆的两条切线,它们的切线长相等。连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角。

  22. 弦切角定理弦切角的度数等于它所夹的弧的度数的一半。弦切角等于它所夹的弧所对的圆周角。

  23. 相交弦定理;切割线定理;割线定理。

 
 
更多>大智教育相关文章

考试报名
推荐图文
推荐大智教育
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  网站留言  |  RSS订阅  |  违规举报
智学网-大智教育,好的学习方法与技巧指导,我要自学网站