推广 热搜: 学习方法  各学科学习方法  学科学习方法  脑力开发  演讲与口才  小学学习方法  记忆力  初中学习方法  资讯  英语 

高中数学必修四二求解无棱二面角大小的办法

   日期:2021-01-07     来源:www.vqunkong.com    作者:智学网    浏览:670    评论:0    
核心提示:以下是智学网为大伙收拾的关于《高中数学必修四二求解无棱二面角大小的办法》的文章,供大伙学习参考!题目 (2011高考考试全国

以下是智学网为大伙收拾的关于《高中数学必修四二求解无棱二面角大小的办法》的文章,供大伙学习参考!

题目 (2011高考考试全国卷第16题)已知如右图,点E,F分别在正方体ABCD-A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则平面AEF与平面ABC所成二面角的正切值等于____.

对策一 使用空间向量求解

解法1 (使用空间基向量求解)由题意,=+,=+=++.设平面AEF的法向量为n=x+y+z,由n?=0,n?=0,得(x+y+z)?(+)=0,(x+y+z)?(++)=0,把有关量代入化简,得x+z=0,x+y+z=0.取z=3,解得x=y=-1,从而n=

--+3,不难求得n=.

又平面ABC的法向量为,故n?=(--+3)?=3,所以cosplay〈,n〉==,从而sin〈,n〉==,tan〈,n〉=.故平面AEF与平面ABC所成二面角的正切值等于.

点评 面对丰富的几何条件,特别是每一个顶点处的向量都容易表示两两夹角及线段的长度也容易求出,使用空间几何向量求解是最容易操作的.虽然对于填空或选择题来讲,如此或许会浪费时间费力、小题大做,可这是一种万全之策.

解法2 (使用空间坐标系求解)分别以DA,DC,DD1为x,y,z轴的正半轴,打造空间直角坐标D-xyz,得A(1,0,0),E1,1,,F0,1,,从而=0,1,,=-1,1,.设平面AEF的法向量为m=(x,y,z),由m?=0,m?=0,得y+z=0,-x+y+z=0.取z=3,得m=(-1,-1,3),故m=.

又平面ABC的法向量为=(0,0,1),所以由cosplay〈,m〉==,可得sin〈,m〉==,从而tan〈,m〉=.故平面AEF与平面ABC所成二面角的正切值等于.

点评 用空间直角坐标系求解时,找(作)两两垂直的三线打造适合的空间直角坐标系是重要.

对策二 使用公式cosplayθ=求解,其中S是二面角的一个半平面中的一个封闭图形的面积,S′是S在另一个半平面上的射影的面积

解法3 由正方体的性质,可知△AEF在平面ABCD上的射影为△ABC.设正方体的棱长为1,在Rt△ACF中,AF===;在Rt△ABE中,AE===.取线段CF的中点为点M,则在Rt△EMF中,求得EF=;取线段AF的中点为点N,则在Rt△ANE中,EN===.

由此得S△AEF=AF?EN=××=,S△ABC=AB?BC=,得cosplayθ==,sinθ==,从而tanθ==.故平面AEF与平面ABC所成二面角的正切值等于.

点评 使用面积射影法间接求二面角大小,可防止找二面角的棱及作二面角的平面角双重麻烦,使求解过程更方便.

对策三 使用两个半平面垂线求解

解法4 过点C作CH⊥AF垂足为点H,取线段AF的中点为点N,连结NO,则NO⊥OB,而OB⊥平面ACF,所以NE⊥平面ACF. 从而CH⊥EN.又CH⊥AF,所以CH⊥平面AEF.又CF⊥平面ABCD,从而可得二面角的两个半平面的垂线CH,CF的夹角为∠FCH,该角和平面AEF与平面ABC所成二面角的大小相等.

又∠FCH=∠FAC,所以在Rt△FAC中,tan∠FAC==.故平面AEF与平面ABC所成二面角的正切值等于.

点评 二面角的两半平面的垂线所成角的大小与二面角的大小相等或互补,这就需要先对二面角的大小作粗略的判断:当二面角的一个半平面上的任意一点在另一个半平面上的射影在二面角的半平面上的,二面角为锐角;当射影在棱上时,二面角为直角;当射影在反向延伸面上时,二面角为钝角.

对策四 找(作)二面角的棱,作出平面角求解

解法5 (使用相交直线找棱)分别延长线段CB,FE交于点P,并连结AP,则AP为平面AEF与平面ABC的交线.由于B1E=2EB,CF=2FC1,所以BECF,从而CB=BP,DBAP.又DB⊥AC,所以AP⊥AC.又CC1⊥平面ABC,所以AC1⊥AP,从而∠FAC为平面AEF与平面ABC所成二面角的平面角.

在Rt△FAC中,AC=,CF=,则tan∠FAC==.

点评 若二面角的两半平面同时与第三个平面相交,则这两条交线的交点在二面角的棱上.

解法6 (使用平行直线找棱)记AC∩BD=O,取AF的中点为点N,连结NO,则NOCF,BECF,所以NOBE,所以EN∥BD.又EN?奂平面AEF,设平面AEF∩平面ABC=l,过点A作AP∥EN,则l∥BD,P∈l.以下同解法5.

点评 当二面角的两半平面上有两条互相平行的直线时,由线面平行的性质可知,二面角的棱与这组平行线平行.

解法7 (使用平移平面找棱)分别取线段AF,CF的中点为点N,M,连结NE,EM,NM,则NOCF,BECF,从而可得NOBE,所以EM∥BC,EN∥BD,所以平面ENM∥平面ABC,则平面AEF与平面ABC所成二面角和平面AEF与平面ENM所成二面角大小相等.

由平面ENM∥平面ABC,CC1⊥平面ABC,得CC1⊥平面ENM.又NM⊥EN,NM⊥EN,所以FN⊥EN,从而∠MNF为平面AEF与平面ECM所成二面角的平面角.在Rt△NMF中,NM=,MF=,则tan∠MNF

==.

点评 假如两个二面角的两半平面分别平行,则这两个二面角大小相等或互补.

 
标签: 高二
 
更多>大智教育相关文章

考试报名
推荐图文
推荐大智教育
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  网站留言  |  RSS订阅  |  违规举报
智学网-大智教育,好的学习方法与技巧指导,我要自学网站